Cost/Performance Comparisonsof Alternative Cooling Systems

John S. Maulbetsch Kent D. Zammit

CEC/EPRI Advanced Cooling Strategies/ Technologies Conference Sacramento, California May 31---June 2, 2005

Water Savings

- Wet system
 - 10 to 12 gpm/MW for cooling
- Dry systems
 - ~ 0 gpm for cooling
- For 500 MW combined-cycle @ 80% capacity factor
 - Difference = ~3,000 acre-feet/year
- For 500 MW coal plant @ 80 % capacity factor
 - Difference = ~6,000 acre-feet/year

At what price?

It all depends......

Methodology is more important that pricing

How to compare

- Compare optimized systems
- Include all costs affected by cooling system choice

What are <u>all</u> costs?

- **+** Equipment
- Cooling system power requirements
- O & M costs
- Plant efficiency
- Plant output
- Water
 - Acquisition
 - Delivery
 - Treatment
 - Discharge

What is optimized?

Tradeoffs

Cooling system size

What affects the optimum costs?

- Site characteristics
 - Temperature
 - Elevation
 - Wind
- Plant characteristics
 - Heat rate vs. backpressure
 - Operating profile
- *Business" characteristics
 - Regulated vs. non-regulated
 - Economic expectations
 - Peak vs. average pricing

Site Temperature

Temperature Duration Curves

Plant Heat Rate Curve

Output Correction Curve--Conventional Turbine

Extended back- pressure turbines

Output Correction Curve Comparison

Annual Cost Optimization

ACC Optimization Curves

Wet System Optimization

Site 1---Annual Cost Comparisons

Cost Ratios--Combined Cycle Plants

Dry/Wet System Cost Ratios Gas-fired Combined-cycle Plant

Cost Ratios--- Coal Plants

Dry/Wet Cost Ratios Coal-fired Steam Plant

Water Costs

Costs	Minimum	Low	Medium	High
	\$/1,000 gallons	\$/1,000 gallons	\$/1,000 gallons	\$/1,000 gallons
Acquisition	Nil	\$0.50	\$1.25	\$3.00
Delivery	Nil	\$0.13	\$0.57	\$1.20
Treatment/Disposal	\$0.10	\$0.22	\$1.00	\$4.28
Total	\$0.10	\$0.85	\$2.82	\$8.48

Effect of Water Costs

Annual Cost Ratios vs. Water Cost

□Base--\$1.00/kgal**□** \$2.00/kgal□ \$4.00/kgal

Amortization Factor

Effect of Amortization Rate

Effect of Average Power Price

Effect of Year-Round Power Price--Site 1

Effect of Peak Power Price

Effect of Peak Period Power Prices on ACC Optimization Site 1---Hot, arid

Wet/Dry System

Summary

- ✓ Water savings
 - 500 MW CCPP ----- ~900 million gallons
 - 350 MW coal plant ----- ~2 billion gallons
- ✓ Cost ratios
 - Capital cost ----- 3.5 to 4.5
 - Plant output reduction (hot, arid site)
 - Hottest hour ----- ~25%
 - Hottest 1000 hours ---- ~8%
 - Annual average ---- ~2%
- Breakeven water cost
 - \$3.50 to \$4.50/1,000 gallons